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Abstract--The differential form of the "two-fluid model" for annular flow, neglecting surface tension, is 
ill-posed, and it is not suited for examining the stability of the steady-state solutions with respect to the 
average film thickness. It is shown here that a discrete (difference) representation of the two-fluid model 
may lead to an appropriate criterion for the stability of the steady-state solutions. Exactly the same 
criterion is obtained from the requirement that the kinematic waves will propagate in the downstream 
direction. The suggested discrete form of the "two-fluid model" is used to perform transient simulation 
and for examining the system response to finite disturbances. 
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I N T R O D U C T I O N  

The simplest and most effective method for calculating pressure drop and film thickness for 
steady-state annular flow is to use the integral approach which treats the gas and liquid as two 
separated fluids with a spatially uniform cross-sectional area. Effective wall and interfacial shear 
stresses are required to account for the wavy structure of  the liquid film. The solution of  this 
steady-state model may yield multiple steady-state solutions, some of  which are unstable. 

The transient formulation which is consistent with the aforementioned steady-state solutions is 
provided by the "two-fluid model" in which surface tension and gravity are neglected. This 
transient equation system of the two-fluid model possesses complex-valued characteristics and thus, 
as is well known, it is not well-posed as an initial value problem. The complex characteristics 
associated with these equations imply unbounded exponential growth (Lyczkowski et  al. 1978; 
Ramshaw & Trapp 1978; Stewart & Wendroff 1984; Jones & Prosperetti 1987; Lin & Hanrat ty 
1986; Banerjee 1985). This ill-posedness manifests itself as instability of the differential equations 
and indeed, a linear stability analysis of  annular flow using the two-fluid model, neglecting surface 
tension, shows, as is well known, that the steady-state solutions are always unstable owing to the 
Kelvin-Helmholtz (K-H)  type instability (Ramshaw & Trapp 1978; Barnea & Taitel 1989). 

Barnea & Taitel (1989, 1990) claimed that the full two-fluid model is not suitable to examine the 
stability of steady annular flow, where the solution is obtained for an average film thickness using 
effective interfacial shear stresses. This is because the existence of K - H  instability in steady annular 
flow is expected a p r i o r i  and steady annular flow is dynamically unstable with regard to its interface, 
resulting in an unstable wavy interface. However, our question of  interest is whether this kind of  
steady annular flow is a stable structure with respect to its average film thickness and average phase 
velocities as obtained in the steady-state solutions. In order to answer this question Barnea & Taitel 
(1989) suggested a few simplified dynamic formulations based on various assumptions. Common 
to all assumptions is that all of  them eliminate the Bernoulli amplification from the transient 
equations. Using these dynamic formulations a linear stability analysis was performed, arriving at 
a simple logical criterion for the stability of  the multiple steady-state solutions. It seems that these 
dynamic formulations are those that are suited to answer the question whether annular flow with 
an unstable wavy interface is a stable structure that can be realized physically. 

In the present work it will be shown that some results obtained from the viscous K - H  analysis, 
on the full two-fluid model, can be also used to arrive at the same criterion for stable steady-state 
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solutions, as that obtained by the simplified transient formulations. In addition it will be 
shown that the two-fluid model presented in a spatial discrete form ("the cell model") also leads 
to the aforementioned structure stability. Thus, although the transient two-fluid model with the 
elimination of gravity and surface tension is ill-posed, it can be used to obtain logical transient 
simulations which converge to the steady state which is stable according to the criterion presented 
by Barnea & Taitel (1989). 

L INEAR STABILITY ANALYSIS USING THE TWO-FLUID MODEL 

The transient two-fluid model for annular flow, assuming incompressible flow and neglecting 
surface tension is formulated by the following equations: 
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where P is the pressure, t is time, x is the coordinate in the flow direction, g is the acceleration 
of  gravity, A is the cross-sectional area, U is the axial average velocity, z is the wall shear stress, 
~ is the interfacial shear stress, S and Si are the perimeters over which ~ and zi act, e is the phase 
holdup, p is the phase density and fl is the angle of inclination from the horizontal (positive for 
upward flow). The subscripts L and G denote liquid and gas, respectively. 

Eliminating the pressure drop from [3] and [4] yields 

OUL OUc OUL OUc 
P~-~T - P°-Yi- + P~ u~-~-x - P°u°-T~-x = r ,  [51 

where 

Si ( !  -Jr- L~(~'i -- "~iL), [6] 
F = ~ \eL eG/ 

• ir is the interfacial shear stress needed for a steady-state flow for a given liquid velocity, UL, and 
film thickness, 6, 

TLSL 
(PL - pG)Ag sin fl + - -  

£L 

and Ti is the shear stress provided by the gas, which depends on the gas velocity, UG, and the film 
thickness, 6, 

1 T~ = ~f~ po U ~ .  [81 

For steady state ziL = zi. 
A linear stability analysis of [1], [2] and [5] yields the following criterion for stability (Barnea 

& Taitel 1989): 

(CR -- a) 2 + PLPG trr _ UL)2 < 0, [9] 
p2~.L ~ ~," G 
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where 

and 
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The term CR corresponds to the wave velocity at marginal stability (Barnea & Taitel 1989; Barnea 
1991). 

It is interesting to observe that the expression for CR is also exactly the same as the kinematic 
wave velocity presented by Wallis (1969) and Wu et al. (1987): 

~ULs = CR. [12] 
C K = ~  UtZ+UGs 

Criterion [9] indicates that the flow is always unstable, since both terms on the l.h.s, are always 
positive. This criterion is related to the well-known K-H instability when the shear stresses are 
taken into account. It has been shown (Andreussi et al. 1985; Barnea 1991) that as long as the liquid 
supply in the film is sufficiently small to prevent blockage of the gas core the instability represented 
in [9] results in large-amplitude roll waves on the film interface. Namely, criterion [9] indicates that 
the interface of steady annular flow is always unstable. 

However, our question of interest is whether this steady annular flow with its unstable wavy 
interface is a stable structure with respect to the average film thickness obtained in the steady-state 
solution. It is assumed here that in order to maintain the stable structure of annular flow the 
characteristic velocity, CK, must be compatible with upstream boundary conditions, namely for 
co-current flow CK(=CR) should be positive. In the case when the kinematic waves are in the 
opposite direction the general structure of the wavy liquid film will collapse, namely the steady-state 
solution that was obtained for the average film thickness is physically unstable and will not exist. 
Thus, for co-current gas-liquid flow where the liquid film velocity is positive the condition for 
structural stability is: 

CK = CR>0. [13] 

Since the denominator in [11] is always positive, the stability criterion for co-current flow is 

O~-~FL [ > 0  [14] 
ULs,UGs 

o r  

<0. [15] 
C~eL VLs deL Vos 

For the case of counter-current flow where ULS is negative a similar derivation yields: 

> 0. [161 
63eL VLs aeL VGS 

These are exactly the same criteria as those obtained by Barnea & Taitel (1989) who used quite 
different considerations and performed a linear stability analysis on a simplified transient 
formulation. 

Equations [15, 16] provide simple and general criteria for determining the linear stability of the 
steady-state solutions. Note again, that these criteria point out whether the steady-state solution 
is a stable structure with respect to its average film thickness. These criteria are easily applied by 
using steady-state diagrams where ~i is plotted vs 6/D;  D is the pipe diameter. Figure 1 is an 
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example of such a diagram for vertical co-current annular flow, where two different correlations 
for the interfacial shear stresses, zi, are used. When a constant value of the interfacial friction factor 
f~ is used, multiple solutions may occur: two linearly stable solutions (points A and C) and one 
unstable solution (point B). When Wallis's (1969) correlation is used for fi, a single linearly stable 
solution is obtained for any gas and liquid flow rate (l:oints D or El. Barnea & Taitel (1990) have 
shown that only solutions on the solid lines that are to the left of the minimum of the ZiL VS 6 curve 
are stable to finite disturbances. 

In the next section it will be shown that a linear stability analysis of the discrete representation 
of the "two-fluid model" will lead to exactly the same stability criterion for the annular structure 
as that in [15] and [16]. 

THE D I S C R E T E  R E P R E S E N T A T I O N  THE CELL M O D E L  

The discrete form of the set of  partial differential equations [1]-{4], for the special case of the 
quasi-equilibrium assumption in the gas, is established by dividing the pipe into n equal-sized cells. 
Continuity and momentum balances are applied to each cell resulting in 2n ordinary differential 
equations. The equations are derived with the advective terms approximated by "backward" 
difference operators, namely information is travelling only in the downstream direction. 

The resulting difference equations are (see the appendix): 

and 

dULl 
dt 

and for j = 2 , . . . , n ,  

and 
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+ PL DeLj X/--1 -- eli ( r i j -  riLj ). 
[20] 
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Equations [17]-[20] are in the general form 

dell dULl t dt = f l  (eLl, Uu),  dt = g l  (eLI, ULI ), 

deLj -'~'- =fj(eLj-I ULj-I ,eLj ,  ULj), dULj=gj(eLj_ 1, ULj_ UL i) ' dt I, eLj, 

all <0: 

[21a-d] 

Linear stability requires that the eigenvalues of  the following matrix at steady state are 

o(f"g') t 
£~ (eLI, ULI ) 

[22] 
c3(fj, gj) f o r j  > 1. 

0 (eL j_ l '  ULj- l, eli,  ULj) 

The eigenvalues are found by equating the following determinant to zero: 
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0 0 ~g3 dg3 dg3 ~g..__2_3 _ ). 
•UL2 deL2 dUL3 deL3 

0 0 0 0 

0 0 0 0 

[23] 

where 

A I ~-- 

and 

all terms to the right of  it are zero. It can be shown that the value of  the determinant A M is the 
product of  the determinants of  the 2 x 2 matrices on the diagonal. All the 2 × 2 matrices on the 
diagonal are essentially identical with the exception of  the first cell. This determinant will be 
designated as  Ai and the others Aj. The eigenvalues are the solution of  

AM = hi 6 7-  l = 0 ,  [24]  
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/eL 

[25] 

; [26] 

0 0 0 0 . . . . . . . . . . . .  

Note the special structure of  this matrix--which has 2 x 2 matrices on the major diagonal and 
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equating Al and As to zero results in the following equations for the eigenvalues: 

 'LS L 
pLDeL----~L--~L/ /RL ~ ~'- iI~L ~ / ~ - ~ d i  ~ ~ =0  

and 

ULs 2 gTiL k 
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For stability, all values of 2 should be < 0. Since the coefficient of  2 in the quadratic equations 
A1 and As is always positive, the requirement for negative 2 is satisfied when the zero-order term 
of the quadratic equations are > 0, namely 

4 (.ULs g'CiL g~i g~iL~ 
c, =lpLD l~]-~--eL\ e[ gUL f geL geL) > 0  [291 

and 

4 {ULs gTiL gTi gZiL'~ //ULS~ 2 /~LPG U2s > 0. [30] 

The two last terms in [30] are positive, thus the need for c I > 0 satisfies also c s > 0, hence the 
criterion for stability is 

ULS g'giL g'17i ] g'iL[ 
- -  - - -  > O.  [ 3 1 ]  

~ oL + geL uos aeL uL 

Note that in [31] the differentiation of ZiL is with respect to eL for constant UL. Considering that 
ZiL =f(ULs(UL, eL), eL) one can write the relation 

aZiL = g'CiL gULs .at_ g'CiL 
geL vL gULsI,L ge---~lu ~ gel t'~s [32] 

Substituting [32] in [31] and using the steady-state relation ULS = eL UL yields the simple relation 

gZiL gZi [ < 0. [33] 
~/~L ULS -- ~L . UGS 

This is exactly the same criterion as [15] which was obtained from the requirement of Cx > 0. 
This result is expected since the discrete form of the differential equation is consistent with the 
propagation of  the kinematic waves in the downstream direction. 

One of  the simplified modes that has been suggested by Barnea & Taitel (1989) for analyzing 
the stability of  the steady-state solutions, assumes a uniform film thickness along the pipe. This 
is a special case of  the discrete form of the two-fluid model presented here, [17]-[20], where the 
number of cells, n, equals 1. 

It has been shown that a linear stability analysis of the discrete form of the two-fluid model leads 
to a stability criterion, like that given in [15], independent of  the number of cells. However, for 
a very fine discretization, where n ~ ~ and 1 ~ 0, the zero-order term cj of the quadratic equations 
for the eigenvalues [30] may attain a large value, leading to large values of the imaginary part of  
the eigenvalue. In this case, even if the steady state is stable (the real part of the eigenvalue is 
negative) the convergence to steady state is oscillatory. 

The discrete form of the two-fluid model, will be used now to perform transient numerical 
simulations. These simulations can help us in analyzing the non-linear stability of the steady state 
and examining the transient response of the system to finite disturbances. It is shown here that 
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although the original set of  differential equations is ill-posed, the suggested discrete form enables 
one to perform transient numerical simulations around the steady-state solution and to get 
numerical results which seem to be physically logical. 

T R A N S I E N T  S I M U L A T I O N S  

Dynamic numerical runs were carried out using the discrete form of the two-fluid model, 
[17]-[20]. The transient simulations started at various deviations from the steady-state solutions, 
and the initial conditions were the same in all the cells. The results at different positions along the 
pipe are shown in figures 2-8. Two kinds of  transient results are illustrated: (a) trajectories on a 
UL vS eL plane; and (b) eL VS time. 

Figures 2-5 show the dynamic response of  the system to finite disturbances, for the case where 
a constant fi is used and three steady-state solutions are obtained (see figure 1). It is clearly seen 
(figures 2-5) that the trajectories are attracted to the stable steady-state solution (A), even for 
relatively large deviations from the steady state. The convergence is smooth and without 
oscillations, in each of  the cells along the pipe. A time delay in the response is noted as the 
observation point is moved further downstream in the pipe (figures 3 and 5). 

Solution B, which is linearly unstable, is a repellent point and trajectories move away from this 
steady state even when the initial condition is exactly the steady-state value. 

Point C, which was found to be linearly stable, is practically an unstable solution even for very 
small disturbances. Figures 2-5 show the dynamic response for a small deviation from steady state 
(C) for two values of  the cell length (5 and 1 m). In the first cell, the system returns to steady state 
through small oscillations. However, as one moves downstream along the pipe these oscillations 
are amplified with substantial overshoots, where eL might exceed the value of  0.5 during the 
transient response. This will practically block the pipe cross section resulting in the collapse of  
annular flow. Note also that during the transient process the system passes through negative 
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Figure 2. Dynamics imula t ions :  U L vs  e L . Cell length I = 5 m 
(points A and C shown in figure 1). 
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l = 5 m (points A and C shown in figure 1). 



712 D. BARNEA 

o 
N=I0 

c . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i 

O.O 0.1 0 .2  0 .3  0 .4  0 .5  O.O 

. . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i 

0 . 0  O.t  0 . 2  0 . 3  0.4. 0 . 5  O.O 

o 
N=I 

C 

6 

- ~  . . . . . . . .  i . . . . . . . . .  | . . . . . . . . .  i . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , 

0 . 0  0 .1  0 .2  0 . 3  0 .4  0 .5  O.O 

EL 
Figure 4. Dynamic simulations: U L vs e L . Cell length l = 1 m 

(points A and C shown in figure 1). 

3 

0 

....1 ~ o 

N=I0 

~! .................................................. 
0 20  41) (IQ 8 0  lOO 120  140  160  180  

! . . . .  i . . . .  i . . . .  J . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . .  i 

2 0  4 0  6 0  8 0  1 0 0  I P . O  1 4 0  1 0 0  1 8 0  

N=I 

o i l l l l l l l , ,  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I 

O ~0  4 0  8 0  8 0  l O 0  120  140  160  180  ; ~ Q  

time (s) 

Figure 5. Dynamic  simulations: eL VS time. Cell length 
l = 1 m (points A and C shown in figure 1). 

liquid velocities which will destroy the structure of co-current annular flow. The finer the 
discretization is, the more pronounced and closer to the pipe entrance are the oscillations (figures 4 
and 5). 

Similar transient simulations have been carried out for the steady-state points D and E in figure 1. 
These steady states were obtained by using Wallis's (1969) correlation forf~, and both, were found 
to be linearly stable. The behavior of point D, which is on the branch to the left of the minimum 
of the ~iL VS 6 curve, is similar to point A. The trajectories are attracted to point D in each of the 
cells along the pipe, for any grid size (figure 6). On the other hand, point E, although being linearly 
stable, has the same peculiar character as point C. The system returns to steady state (El through 
substantial oscillations (figures 7 and 8) causing overshoots in the liquid holdup. Thus, practically 
only steady-state solutions that correspond to the thinnest film thickness are expected to exist 
(points A and D in figure 1). 

SUMMARY AND CONCLUSIONS 

The steady "two-fluid model" may yield multiple steady-state solutions for the average film 
thickness and phase velocities in steady annular flow. Our question of interest is which of these 
steady states are realized physically and will actually occur. 

The respective transient formulation of the two-fluid model, [1]-[4], is ill-posed as an initial value 
problem and a linear stability analysis using this model indicates that the steady-state solutions are 
always unstable owing to the K-H nature of the instability. Namely, each solution of steady 
annular flow is dynamically unstable with respect to the wavy interface, due to the absence of 
gravitational stabilizing force. 

However, our purpose is to study the stability of the structure of an annular flow with respect 
to its average film thickness and average film velocities as obtained by the steady-state solutions. 



D I S C R E T E  T W O - F L U I D  M O D E L  F O R  A N N U L A R  F L O W  713 

, - .1  

o , , ,  . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i 

0.0 0,1 0.2 0.3 0.4, 

0.0 .5.0 10.0 16.0 20.0 25.0 30.0 35.0 

t ime  (s) 
Figure 6. Dynamic simulations. Cell length 

l = I m (point D shown in figure 1). 

T . . . . . . . . .  i . . . . . . . . .  | . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i 

O.I O . Z  0.31 0 .4  0 ,5  0 ,8  

Figure 7. Dynamic simulations: UL vs ~L" Cell length 1 = 1 m (point E 
shown in figure 1). 

It is shown here that the difference representation of  the two-fluid model leads to the appropriate 
answer concerning the stability of  the steady-state solutions. A linear stability analysis, using the 
difference form of  the two-fluid model yields a logical and simple criterion for the stability of  the 
steady-state solutions. This criterion is found to be consistent with the requirement that the K - H  
waves on the interface propagate in the downstream direction. 

While the set of  differential equations of  the two-fluid model is ill-posed, the suggested discrete 
form can be used to carry out dynamic numerical simulations, which are used to examine the 
transient behavior of  the system and the stability of  the steady-state equations. It was found that 
only solutions that are associated with a thinner film are stable. 

To summarize, one has to distinguish between the stability of  the interface and the stability of  
the steady-state solutions, where the solution is obtained for an average film thickness using 
effective interfacial shear stresses. The stability of  the interface is determined by a linear analysis 
using the differential equations [1]-[4]. While the answer to the question whether annular flow at 
a certain average film thickness is a stable structure is obtained by analysis of  the discrete form 
of  the "two-fluid model". 

The relation between the stability of  the steady-state solutions and the direction of  propagation 
of  the interfacial K - H  waves may shed some light on the well-known dilemma, that equations that 
are ill-posed, can be used, in an appropriate scheme, to carry out transient simulations which 
converge to the stable steady states. 
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Figure 8. Dynamic simulations: e~ vs time. Cell length l = 5 m (point E shown in figure 1). 
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A P P E N D I X  

The Numerical Cell Model 
The pipe is subdivided into n cells of  equal length, l. The flow is assumed to be incompressible 

with constant properties. Integral continuity and momentum balances are applied to the liquid and 
gas for each cell. 

For cell j ( j  > 1) the following conservation equations are obtained for the liquid film: 

and 

pL l d(ALj ULj) 
dt 

dALj 
p L I - - ~  = pL(ULj - IALj - 1 -- ULyALj) [A.1] 

/ d P ' x  
+ PL (U2yALj - 2  A --ALy [--~-~-/ -- TLy ULj_ l Lj_l) = l SLyl + ziySijl--pLALjlgsinfl. 

\ u z  /s 
[A.2] 

Since for the case of annular flow, the gas velocity is much faster than that of the liquid, the 
quasi-equilibrium condition is assumed for the gas: 

UGj_ I AGj_ 1 = UGy AGy = UGS A 

: ( d P ~ l  po ( U oj Aoy - U ~j_ , Aoy_ , ) = - Aoj \ ~x  ~ - zij S 0.1 - Pc Aoy lg sin ft. 

Inserting [A. 1] into [A.2] and rearranging yields: 

: A ULjALy_,~ 1 ( d P ~ 4  "cijS~j dULy 1 (ULj_I__Lj_ 1 ULj_ I . _ _ _  

d t  = ) ,,, ALj ~Ly ,] PL \ dz/ly pEALs 

[A.3] 

[A.4] 

ZLy SLy 
g sin ft. [A.5] 

pL ALy 

Inserting [A.3] into [A.4] yields 

Po os kA-~scs Aoj ~4oy_ ~ = - dz  Acy Pog sin ft. [A.6] 

Equating the pressure drop in [A.5] and [A.6] results in 

d U L j A L j l  (i~a-- j = - ( v ~ j _ ,  - v ~ j _ l  ULj)  -4 p °  U ~ s A  ~ 
dt IALj PL 1 

ZLj SLy 

PL ALj 

and 

Aoj- tA 

( 
--  - -  + ~ q  pLAoj  g 1 --  PLf  

Expressing the geometrical quantities in [A.1] and [A.7] in terms of ~L = ALIA results in the 
following differential equations for cell j :  

dSLj = _l (ULj-leLj- I -- ULjeLj) [A.8] 
dt l 

and 

Po U~s [- 1 dULj= SLj_, ( V ~ j _ l -  ULj_, ULj) + p-'Le ---/-- [(1 --SLy) 2 
dt lSLj 

where 

1 l 
(1 - e l y - , ) ( 1  --  eLy) 

4 
+ , - - - - - -  (xv-  ZiLj), [A.9] 

PL D~Lj X/ |  -- ~Lj 

ZiLS=Ig(1--PL~sinfl+Po} pLDSLj]4ZLJ ]pLDSLj~I--eLJ4 [A. 10] 



7 1 6  D. B A R N E A  

For the first cell, j = 1, the boundary conditions should be taken into account resulting in 
somewhat different equations. The contintuity and momentum equations for the liquid and gas are: 

d 
P L ~  (/ALl) = pL(ULs A - -  ULIAL,),  [A.11] 

PL ~ (lAt.l ULt) + pL[U[, AL, -- (ULsA)ULi.] = --ALl I -- ~L~ SLtl + TnSi, l -- pLALI lg sin fl; 
I 

[A.121 

and 

and 

UGIAGI = UGS A, 

~0 G [UGI AGI -- (UGs A)  UGin] = -- AGI 

The inlet velocities, ULjn and UGi~, are taken as 

ULs A 
ULi n = - -  

/ILl 

- % S i l l  -- pGA¢llg sin ft. 

[A.13] 

[A.14] 

Uos A 
UGi n = - -  [A,15] 

AGI 

Inserting [A. I 1] into [A. 12] and [A. 13] into [A. 14] and equating the pressure drop in the gas and 
the liquid yields 

dULl ULsA ( ULsA~ = 
d'-~-- + TLI/ ULI --~LI / 

or in terms of the liquid holdup: 

PL \ALl ~ -- 1--~L gs inf l ;  
"~L1 aLl 

where 

pLALI 

4 
= _ _ _  . 

J 
dULl ULS (ULs  eL l + ('t'il --  "~iL1 ), 

dt leL1 \ eLI PL DeLl x/1 -- ell 

[A.16] 

[A.17] 

[A.181 

[A.19] 

[ ( ~ G  L)  4TLI IPLDSLI41--SL' 
"t'iL 1 ~- g 1 - sin fl + PLDSLt.j 4 

Equation [A.17] together with the following continuity equation, 

deLl 1 
dz = 7 (ULs -- ~L1UL,), 

are the representing equations for cell 1. 


